The history of solar !!

Derek Nalley and Scott Pinegar National Science Standards: Content Standard A: Science as Inquiry: Students have the ability to develop questions/ideas, formulate tests and experiments, analyze data and come to conclusions about their questions/ideas. Specific standards met in this module: • Abilities necessary to do scientific inquiry • Understandings about scientific inquiry Content Standard B: Physical Science: Students know and understand the nature of matter from the microscopic to the macroscopic levels and the interaction of energy and matter. Students understand mathematics as an interpretation of physical phenomena. Specific standards met in this module: • Conservation of energy and increase in disorder • Interactions of energy and matter Content Standard D: Earth and Space Science: Students understand the earth’s processes, interaction of matter and energy, origin and evolution of the earth system and the universe. Specific standards met in this module: • Energy in the earth system Content Standard E: Science and Technology: Students understand the interrelationship between science and technological design and advancement. Specific standards met in this module: • Abilities of technological design • Understandings about science and technology Content Standard F: Science in Personal and Social Perspectives: students understand health issues relating to their own health and the health of communities. Students understand the human impact on natural resources and the environment and that they are part of a global environment. Specific standards met in this module: • Natural Resources • Environmental quality • Natural and human induced hazards • Science and technology in local, national, and global challenges 31 This lesson plan may contain links to other resources, including suggestions as to where to purchase materials. These links, product descriptions, and prices may change over time. Standard G: History and Nature of Science: Students understand that science is done by humans either individually or in teams and can be done on a small scale of field tests or on a large scale with many scientists working on one question. Science is also a unique way of knowing which depends on logic and observation of the natural world and also is ever changing based on new ideas and data. Specific standards met in this module: • Science as a human endeavor • Nature of scientific knowledge Teacher’s Overview: This module will address issues dealing with the energy from the sun, the energy needs of students in the classroom, and ultimately our energy needs as a nation. Students will use a photovoltaic (PV) cell to measure the energy from the sun. Using a light bulb with a known wattage, the students will illuminate the light bulb using the PV cell. This way the students will know the approximate energy coming from the PV cell. An alternative way for the students to calculate the energy coming from the PV cell is to measure the voltage and the current output from the PV cell across a resistor and use the equation P = IV to calculate the power produced. This is the way that is planned out in the labs related to this unit. From here the students use the efficiency of the PV cell and the area of the cell to calculate the energy of the sun at that time of day. Also, students will experiment with different color filters to determine the energy output of the solar panel at different wavelengths. This will allow them to determine the spectrum of light in which the sun emits the most energy. At home, the students keep track of the energy they use in terms of kilowatthours by finding the energy usage of all of the appliances they use on a daily basis. After investigating their daily usage of energy the students can then calculate how many PV cells they would need in order to supply them with the energy they use on a daily basis. Next they compare the benefits of using PV energy rather than conventional means of electricity generation such as coal burning or nuclear power. Specifically, the students calculate how much coal is required to create the electricity they use on a daily basis and then compare this cost to the cost of the PV system they would need. Environmental benefits and consequences are also addressed in this comparison. Learning Objectives: Students will learn about energy conservation and transformation, specifically from radiant energy to electrical energy. Students will understand scientific inquiry as it pertains to taking data and making conclusions about that data. Students will understand their personal connection to the energy they use and the cost of generating that energy. Students will explore further the energy associated with the Earth/Sun system and how the energy from the sun drives many of the processes on Earth. Finally, the students will begin to understand